
Accurate Fine-Tuning of Spatiotemporal Fourier Neural
Operator for Turbulent Flows

Shuhao Cao1 Francesco Brarda2 Ruipeng Li3 Yuanzhe Xi2
1UMKC 2Emory 3LLNL

Efficient and Reliable Deep Learning Methods and their Scientific Applications
Birs Workshop, June 2025

Question: which is more important in operator learning
tasks?

Data or Model (training algorithm, neural architectures)?

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 2

Spatiotemporal Operator Learning

Setting the Stage

Toy model: approximating Navier-Stokes equations in a 2D periodic box
• (Velocity) Find u ∈ H1(T2) ∩ {v ∈ H(div) : ∇ · v = 0}

∂tu + u · ∇u− ν∆u + αu = f ,

• (Vorticity-Streamfunction) Find ω, ψ ∈ H1(T2)

∂tω + (∇⊥ψ) · ∇ω− ν∆ω + αω = 0, ω + ∆ψ = 0.

A long and rich history of numerical analysis for the NSE
• Projection schemes: CHORIN (1968), SHEN (1992).
• (Pseudo) Spectral: ORSZAG (1971), ORSZAG (1972), TADMOR (1987), KU, TAYLOR, and HIRSH (1987),
SHEN (1994).

• Finite element: GIRAULT and RAVIART (1986), BREZZI and FORTIN (1991), TEMAM (1995).
• Stability, convergence, time-stepping stencils: HEYWOOD and RANNACHER (1986), C. WANG
and J.-G. LIU (2002), HE and W. SUN (2007), GOTTLIEB et al. (2012), CHENG and C. WANG (2016).

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 3

Time-Marching Solvers for NSE

RK4

• Crank-Nicolson for the diffusion term, explicit for the convection term, step size τ
has to be comparable to O(∆x/‖ω(t, ·)‖∞) and o(ν).[1](

I − τ

2
νL

)
ω(tℓ+1) =

(
I +

τ

2
νL

)
ω(tℓ) − τ

(
∇⊥(−∆)−1ω(tℓ)

)
· ∇ω(tℓ).

• Aliasing error caused by the nonlinear term in pseudo-spectral methods: the
modes extend “outside” of the approximation space. Possible remedies: filtering
(“2/3-rule”[2]), higher-order[3], or disspating the aliased modes.

[1] X. WANG (2012). “An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier–
Stokes equations”. In: Numerische Mathematik.
[2] J. GOODMAN, T. HOU, and E. TADMOR (1994). “On the stability of the unsmoothed Fourier method for hyperbolic equations”. In: Numerische
Mathematik.
[3] S. NAGARAJAN, S. K. LELE, and J. H. FERZIGER (2003). “A robust high-order compact method for large eddy simulation”. In: Journal of Compu-
tational Physics.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 4

Learning Operators between “Function Spaces”

Operator-valued NN and operator learning: Lθ : Rn×m×din → Rn×m×dout .
• How the “basis” (frames) are constructed and how are they aggregated?
◦ Latent frames are (nonlinear) universal approximators, and then are linearly
aggregated through coefficients independent of the current latent space;
Fourier Neural Operator: Z. LI, KOVACHKI, et al. (2021), and many others.
◦ Frames/“basis” are linear projections of the current latent representations,
then aggregated nonlinearly (input-dependent kernel integral). Nonlocal
kernel: BUADES, COLL, and MOREL (2005), GILBOA and OSHER (2007).
Transformer/Attention: C. (2021), Z. LI, MEIDANI, and FARIMANI (2023), HAO et al.
(2023), BARTOLUCCI et al. (2024), WU et al. (2024), YU et al. (2024), and many
others.
◦ Both aggregation and frames are nonlinear. DeepONet: LU et al. (2021),
S. WANG, H. WANG, and PERDIKARIS (2021).

• Neural super-resolution operator. Spatial: KOCHKOV et al. (2021); temporal: Z. SUN,
YANG, and YOO (2023).

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 5

Learning Time-Marching with Data

RK4

Rollout

• Train an “autoregressive” operator learner Gθ that maps {ω(t, ·)}t∈(tℓ+1,tℓ+10)
to

ω(tℓ+11, ·) for different ℓs. This procedure repeats a “roll-out” prediction until
certain steps.

• These “time-slices” are treated as the input “channels” in neural operators, such
as FNO and its variants, Transformer-based NOs (Galerkin, GNOT, Oformer, DPOT,
Transolver, many others).

• Time steps can be pretty big (e.g., = 100τ), yet the relative difference with the
ground truth is horrible in evaluation (≈ 1%), no stability at all.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 6

Learning Maps between Bochner Spaces

Gθ{
ω(ti)

}ℓ

i=1

{
ω(tℓ+i)

}nt

i=1

Problem of interest
Construct an operator-valued neural network Gθ to “approximate” G:

G : L2(t1, tℓ;V)→ L2(tℓ+1, tℓ+nt ;V), {ω(t, ·)}t∈(t1,tℓ) 7→ {ω(t, ·)}t∈(tℓ+1,tℓ+nt)
.

Gθ : Sℓ → Snt , Rn×n×ℓ 3 win 7→ wout ∈ Rn×n×nt .

• V := H1(T2) or {v ∈ H1(T2) : ∇ · v = 0}.
• Sn ' ∏n

j=1 S , where S is a finite-dimensional approximation space of V .
• n, ℓ, nt can all vary for training and evaluation.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 7

Fourier Neural Operator

Source: Figure 1 from the FNO paper by A. Stuart with his collaborators and students.[4]

• The matrix-valued kernel matrix Rθ(x) in the Fourier multiplication operator
SpConv is learned from data

vout(x) =
∫

Ω
κθ(x− y)v(y)dy = F−1F

(∫
Ω

κθ(x− y)v(y)dy
)

= F−1 (F (κθ) · F (v)) (x) ≈: F−1(Rθ · F (v))(x)

• Frequency truncation in parametrization: for 2D problems, v ∈ RHi×n×n ,
Rθ ∈ CHo×Hi×d×d with d� n. Outputs can be viewed as learnable reduced
“basis”, e.g., n = 128 and d = 12 (# channel = # basis).

[4] Z. LI, N. B. KOVACHKI, et al. (2021). “Fourier Neural Operator for Parametric Partial Differential Equations”. In: International Conference on
Learning Representations.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 8

Fourier Neural Operator

{
ω
(ti)
S

}ℓ

i=1

ℓ×n×n×nt

dv×n×n×nt dv×n×n×nt dv×n×n×nt dv×n×n×nt n×n×nt

{
ω
(tℓ+i)
N

}nt

i=1

The architectural schematics of FNO for NSE: red represents fixed dimensions; blue represents
dimensions that accept arbitrary-sized discretizations. : spectral convolution layer ; :
pointwise nn.Conv3d that works as channel expansion/reduction; : pointwise nonlinearity.
• The novelty of FNO for NSE: for the input tensor of dimension n× n× nt

channel dimension dv ← time steps in the temporal dimension nt.

However, this renders FNO unable to represent data pair in Bochner spaces. The
number of parameters depends on the size of time discretization.

• The data for training and evaluation are prepared by applying a pointwise
Gaussian normalizer that depends on the output steps nt .

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 9

Toward Spatiotemporal Neural Operators

RK4

Rollout

SFNO
|| ||

• Goal: construct an operator-valued neural network with arbitrary spatial- or
temporal-grid sizes input/output.

• Example: if the end-to-end pipeline picks the time slices in a time span of 0.5 as
input, the slices in the subsequent 0.5 as the output, e.g., training data pair with
the input/output tensor of dimension(64, 64, 10), then the evaluation should
be able to deal with input size such as (128, 128, 40) or (512, 512, 100).

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 10

Spatiotemporal Fourier Neural Operator 3D

{
ω
(ti)
S

}ℓ

i=1

n×n×ℓ dv×n×n×ℓ

dv×n×n×dt dv×n×n×dt dv×n×n×dt dv×n×n×dt n×n×(∗) {
ω
(tℓ+i)
N

}(∗)

i=1

The architectural schematics of ST-FNO: : layer normalization after concatenation with
positional encodings.
• Concatenation of random projection of the positional encodings with the input
tensor act as a “channel expansion” (positional encodings ⊕ the input data, then
go through a linear layer), which is a depth-wise linear combination.

• Layer normalization works as a dimension-agnostic normalizer.
• The new output operator has an extra single-channel spectral convolution layer
with less truncated modes. It maps the latent time step dimension (dt) to a given
output time steps using FFT+iFFT’s natural super-resolution by zero-padding the
temporal steps.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 11

How to Train Spatiotemporal FNO?

Motivations: Function Representation

An extremely difficult problem due to the frequency principle[5] and the lottery ticket
hypothesis[6]: train a function representer in low-dimensional spaces with a small number of
parameters with no “labels”. Trying to learn −∆u = 2π2 ∑k∈{1,4,16} sin(kπx) sin(kπy). 1
epoch = 128 ADAM iterations. Error bars are plotted using different seeds (initialization).

[5] B. RONEN, D. JACOBS, Y. KASTEN, and S. KRITCHMAN (2019). “The Convergence Rate of Neural Networks for Learned Functions of Different
Frequencies”. In: Advances in Neural Information Processing Systems.
[6] J. FRANKLE and M. CARBIN (2019). “The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks”. In: International Conference
on Learning Representations.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 12

Motivations: Operator Learning

A not-so-difficult problem: “typical” convergence results for end-to-end operator-valued
neural network training and evaluations[7] for a 2D benchmark problem of porous media[8][9].

[7] C. (2021). “Choose a Transformer: Fourier or Galerkin”. In: Advances in Neural Information Processing Systems (NeurIPS).
[8] A. P. ROBERTS and M. TEUBNER (1995). “Transport properties of heterogeneous materials derived from Gaussian random fields: bounds and
simulation”. In: Physical Review E.
[9] N. H. NELSEN and A. M. STUART (2021). “The random feature model for input-output maps between Banach spaces”. In: SIAM Journal on
Scientific Computing.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 13

Are Neural Operators Really Learning Operators?

Gθ ≈ G|(A, U)

A :=
{
wn ∈ Rn×n×ℓ

}M

m=1
U :=

{
wn ∈ Rn×n×nt

}M
m=1

“ Given the training data pairs {(am, um)}M
m=1, the operator learning problem is

a Bayesian inverse problem with a linear or nonlinear operator as the unknown
object to be inferred from data.

”
- DE HOOP, KOVACHKI, NELSEN, and STUART (2023)[10].

• With the “right” data, the Bayesian inverse problem is well-conditioned.
[10] M. V. DE HOOP, N. B. KOVACHKI, N. H. NELSEN, and A. M. STUART (2023). “Convergence rates for learning linear operators from noisy data”. In:
SIAM/ASA Journal on Uncertainty Quantification.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 14

Statistical Property of NSE: Energy Cascade

• Inverse cascade: a flux of energy from smaller scales (high frequency) to larger
scales (low frequency)[11][12].

• Direct cascade: if the energy dissipation is caused by larger scale vortices inducing
vortex stretching via viscosity, then a stationary regime can be established[13].

E(t, k) = ∑
k−δk≤|k|≤k+δk

|∇̂ × u(t, k)|2 ∼ O(k−β) after t > t0

[11] A. N. KOLMOGOROV (1941). “The local structure of turbulence in incompressible viscous fluid for very large Reynolds”. In: Numbers. In Dokl.
Akad. Nauk SSSR.
[12] D. KOCHKOV et al. (2021). “Machine learning–accelerated computational fluid dynamics”. In: Proceedings of the National Academy of
Sciences.
[13] J. C. MCWILLIAMS (1984). “The emergence of isolated coherent vortices in turbulent flow”. In: Journal of Fluid Mechanics.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 15

Statistical Property of NSE: Energy Cascade

The plots of E(t, k) for all the training samples in the case of the direct cascade (left) and the
inverse cascade (right). Both examples’ initial conditions are sampled from fixed random
fields, respectively. The error bars are plotted with +/− 10 times the standard deviation
from the mean to boost the visibility.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 16

Neural Operators Learn Fast

1 epoch vs 10 epochs: Enstrophy spectrum density comparisons to illustrate the
“convergence” of ST-FNO’s training. There are 10 training runs on a 64× 64 grid starting from
10 different seeds. The evaluation is on a 256× 256 grid for a fixed randomly chosen sample.
The error bars are plotted with +/− 10 times the standard deviation from the mean to
boost the visibility.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 17

Neural Operators Learn Low-Frequency Fast
like really fast but not that accurate

“Spectral bias/frequency principle”[14]: not only neural operators can capture the pattern of
the low-frequency modes of the data well, they can also learn the low modes really fast. The
plots show the enstrophy spectrum density comparison for a randomly selected trajectory for
a given trained SFNO after only 10 epochs. However, the magnitude of the error/difference
still dominates in low-frequency for modeling turbulence[15].

[14] J. ZHI-QIN Xu et al. (2020). “Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks”. In: Communications in Computa-
tional Physics.
[15] P. LIPPE et al. (2023). “PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers”. In: Thirty-seventh Conference on Neural
Information Processing Systems.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 18

Do we really need 500 epochs of training?

Source: Table 1 from the original FNO paper. FNO3d is trained 500 epochs (500× 128
mini-batch ADAM iterations). However, SFNO reaches 1×10−2 relative difference evaluated
on a 256× 256 grid with the ground truth in 5 to 15 epochs, and 6×10−3 after 500 epochs.
More sophisticated Transformers with multilevel feature aggregation[16] can drive the error
down further to 4×10−3 level but not any further.

[16] X. LIU, B. XU, C. , and L. ZHANG (2024). “Mitigating spectral bias for the multiscale operator learning”. In: Journal of Computational Physics.
Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 19

Fine-tuning/Post-processing

Fine-tuning to Improve Accuracy

• Make certain parameters in a spectral convolution layer in FNO correspond to the
coefficients of a basis in the spectral domain (the last single-channel spectral
conv layer).

• Use a stronger norm to train to learn low-frequency modes (L2-based loss with
aggressive frequency truncation), use a weaker norm to post-process/fine-tune
(negative Sobolev norm with less frequency truncation).
◦ The frequency truncation in FNO ≈ Tikhonov regularization (HANSEN, NAGY,
and O’LEARY 2006).
◦ Negative Sobolev norm as an implicit regularization in inverse problems:
OSHER, SOLÉ, and L. VESE (2003) and LIEU and L. A. VESE (2008), ZHU, HU, LOU,
and YANG (2024).

• The negative Sobolev norm of f ∈ L2(T2)/R can be handily computed using FFT,
and this negative norm happens to be the correct functional norm to measure the
residual: R(ωN)(v) := 〈R(ωN), v〉, denote R(ωN)(t, ·) =: r(t, ·)

‖r‖H′ ' |r|−1 := ∑
k∈2πZ2

n\{0}
|k|−2∣∣r̂(k)∣∣2.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 20

New Paradigm

Training
data

{A, U}
Optimizer

P
(
θ|(A,U)

)
learned
or not

Extract
latents

{vN ,ωN }

Fine-tune
the last
SpConv

• Train the neural operator only for a few epochs (e.g., 10) using a strong norm as
the loss until it learns the frequency signature of the data (e.g., the energy
cascade of the NSE).

• Extract the latent tensor up to the last channel-reduction LINEAR SpConv layer
Qθ(·), such that for i = 1, · · · , nt

Neural representation of ω(tℓ+i) = ω
(tℓ)
S + Qθ(vlatent).

• Remove the frequency truncation and fine-tune this layer Qθ ONLY using an
optimizer with a weaker norm.

• ∂tωN is approximated using an IMEX solver implemented as an nn.Module.
• Searching for the best possible θ∗ under a functional norm (negative norm) is
equivalent to solving a variational problem in the positive Sobolev norm.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 21

New Loss: Residual in Negative Sobolev Norm

Theorem (Reliable and efficient a posteriori error estimation)
Under certain smoothness assumptions for ω ∈ H, if the fine-tuning problem can
be solved exactly, for m = ℓ+ 1, · · · , ℓ+ nt − 1, Tm := [tm, tℓ+nt], the PDE residual

R(ω) := rot f − ∂tω− (∇⊥(−∆)−1ω · ∇)ω + ν∆ω

is efficient in representing the error:

‖R(ωN)‖2
L2(Tm ;V ′) ≲ ‖ω−ωN ‖2

L2(Tm ;V) + ‖∂t(ω−ωN)‖2
L2(Tm ;V ′) + h.o.t.

When ωN is sufficiently close to ω,
‖ω−ωN ‖2

L∞(Tm ;L2) + ‖ω−ωN ‖2
L2(Tm ;H1) ≤

∥∥(ω−ωN)(tm, ·)
∥∥2

H1 + C
∫
Tm
‖R(ωN)(t, ·)‖2

V ′ dt.

• The optimization of this is not tied to local adaptive mesh refinement, the loss
can be simply evaluated globally in the spectral domain to refine the (reduced)
spectral basis, similar to ROM (PATERA and ROZZA 2007).

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 22

New Paradigm

(Step 1) Train GΘ := Qθ ◦ FΘ\θ using ∑ω∼p
{
‖GΘ(ωS)−ωS‖2

0 + γ‖Θ‖2
0
}
.

(Step 2) Stop training after the relative difference reached a threshold on the
validation sets.

(Step 3) Fine-tune (post-process) the last layer Qθ where θtrain ∈ C1×H×d×d×dt and
θft ∈ C1×(H+1)× 2n

3 ×
2n
3 ×nt for n the number of grid points in each axis of an

evaluation sample, nt evaluation time steps (e.g., 40).
◦ Approximating the time derivative by ψ(m) = (−∆h)

−1ω(m) with {ω(m)} being
the output of Gθ , and
3ω(m+1) − 4ω(m) + ω(m−1)

2 (δt)
+∇⊥(2ψ(m)−ψ(m−1)) · ∇

(
2ω(m) −ω(m−1)

)
− ν∆ω(m+1) = f (m+1).

◦ Apply an optimizer to find θft by minimizing ∑m∈{ℓ+1,...,ℓ+nt}
∥∥R(ω(m)(θft))

∥∥2
−1.

(Output) A trajectory that satisfies the statistical signature and minimizes the
residual while not having to march O(1/τ) steps.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 23

New Paradigm

RK4

Rollout

STFNO
|| ||

|| || ||

min
θ

∥∥∥R(
uN , DtGα(uN),f

)∥∥∥2
L2(T,V′)

where uN :=
{
uN

(
{θ}nt

m=1

)}

Schematics comparison: the new method a shares striking mathematically resemblance with
a parallel-in-time two-grid method using a learned reduced basis. On a very “coarse”
temporal grid, the spatiotemporal surrogate model gives a very good “initial” guess to
perform implicit residual smoothing.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 24

Numerical Experiments

Taylor-Green Vortex

u(t, x, y) = e−2κ2νt
(

sin(κx) cos(κy)
− cos(κx) sin(κy)

)
with ν = 10−2.

• Training dataset: 10 samples with κ = 1, . . . , 10; evaluation: 1 sample with κ = 11.
• Trajectories are randomly sampled before the breakdown phase.
• Ground truth: pseudo-spectral discretization, second-order Runge-Kutta for the
explicit part, Crank-Nicolson for diffusion part with ∆t = 4×10−3.

• Training is done on 64× 64 for 5 epochs, the evaluation is on 256× 256, time
step is 10 for training, 40 for evaluation. ST-FNO’s parameters have capacity to
represent the discrete solutions in the eval set exactly.

Results for Taylor-Green vortex example ε := ωtrue −ωN , the errors at the final time step.

Evaluation after training After fine-tuning

‖ε‖L2 ‖R‖−1,n ‖ε‖L2 ‖R‖−1,n

FNO3d 1.84×10−1 5.40×10−1 N/A N/A
ST-FNO3d 1.94×10−1 2.18×10−1 1.24×10−6 3.21×10−7

PS+RK2 (GT) 5.91×10−6 1.16×10−5 N/A N/A

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 25

Forced Turbulence: FNO Data
Results for forced turbulence (original toy model example from the FNO paper, ν = 1×10−3).

Evaluation after training After fine-tuning

‖ε‖L2 ‖R‖−1,n ‖ε‖L2 ‖R‖−1,n

FNO 100 ep 1.31×10−2 1.30×10−2 N/A N/A
ST-FNO 10 ep + L2 FT 1.02×10−2 1.27×10−2 2.82×10−4 2.78×10−5

ST-FNO 10 ep + H−1 FT – – 3.16×10−4 4.59×10−7

Pointwise residuals for the ground truth streamfunction, ST-FNO inference, and ST-FNO inference after fine-tuning.

0 20 40 60

0

10

20

30 −20

−10

0

0 20 40 60

0

10

20

30 −20

−10

0

(Left) the log of |R| in the frequency after training; (right) after fine-tuning.
Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 26

Isotropic Turbulence: Direct Cascade (McWilliams 1984)

(Left) the correlation with the highest-resolution DNS ground truth, one step = 55∆t. (Right)
Fine-tuning convergence.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 27

Torch-CFD
github.com/scaomath/torch-cfd

A native PyTorch port of Google Research’s Jax-CFD (Jax-CFD has not been in active
development since Aug 2023) with many new and enhanced features.
• Fully implemented as “tensor-in-tensor-out” with a batch dimension (b, c, *),
more user-friendly for tensor-tracking debugger (VSCode).

• Gridded variables implemented natively as a subclass of torch.Tensor with
their ops using __torch_function__, perfect for staggered grids.

• Modular designs: time-marching schemes, multigrid solvers, different flux
schemes, also implemented as nn.Module with learnable components (Butcher’s
tableau, smoothers, weights for fluxes interpolations). Taking advantage of handy
methods such as _forward_hooks and _backward_hooks.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 28

https://github.com/scaomath/torch-cfd

Traditional Numerical Schemes as Neural Networks

1 class MultigridSolver(nn.Module):
2 def __init__(self) -> None:
3 super().__init__()
4 self.smoothers: nn.ModuleList = ...
5 self.operators: nn.ModuleList = ...
6
7 def forward(self, f, u, lvl):
8 u = self.smoothers[lvl](f, u)
9 r = f - self._apply_op(u, self.operators[lvl])
10 if lvl == self.levels - 1:
11 e = self._coarse_solve(r)
12 else:
13 rc = self.restrict(r)
14 ec = self.forward(rc, 0, lvl=lvl + 1)
15 e = self.prolong(ec)
16 u += e
17 return self.smoothers[lvl](f, u)

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 29

Acknowledgments

• Organizers: Jack Xin (UC Irvine), Gitta Kutyniok (LMU Munich), Stanley Osher
(UCLA), Bao Wang (University of Utah), Andrea Bertozzi (UCLA).

• Co-authors, as well as Long Chen (UC Irvine), Ludmil Zikatanov (back at Penn
State), Ari Stern (WashU).

• Source codes and data to replicate the experiments are available at
github.com/scaomath/torch-cfd/examples  10.57967/hf/2470

• References
◦ C. , F. BRARDA, R. LI, and Y. XI (2025). “Spectral-Refiner: Accurate Fine-Tuning
of Spatiotemporal Fourier Neural Operator for Turbulent Flows”. In: The
Thirteenth International Conference on Learning Representations (ICLR)
cs.LG:2405.17211.

• This research is supported in part by NSF award DMS-2309778.

Cao–Brarda–Li–Xi Fine-tuning Spatiotemporal FNO 30

https://github.com/scaomath/torch-cfd/examples
https://huggingface.co/datasets/scaomath/navier-stokes-dataset
https://arxiv.org/abs/2405.17211

	Spatiotemporal Operator Learning
	How to Train Spatiotemporal FNO?
	Fine-tuning/Post-processing
	Numerical Experiments

