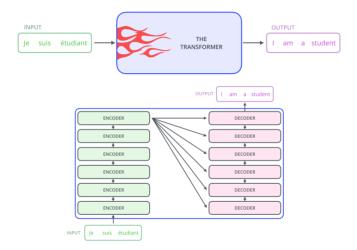
Dissecting Attention: A Numerical Analyst's Perspective

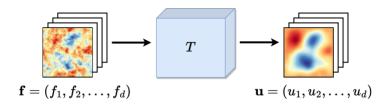
SCML Seminar KAUST, April 2024

What is a Transformer?



The Transformer is a deep neural network architecture to solve the machine translation problem in Natural Language Processing. Source: Jay Alammar. *The Illustrated Transformers*.

Tensor2tensor



matrices to matrices of the same size.

A tensor 2 tensor DNN parametrizes the following discrete man for $2I = (I^2(\Omega))^2$

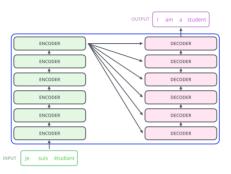
seg2seg or tensor2tensor in Neural Machine Translation maps various sized

• A tensor2tensor DNN parametrizes the following discrete map for $\mathcal{H}=(L^2(\Omega))^d$

$$T_{\theta}: \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d}, \quad T: \mathcal{H} \to \mathcal{H}.$$

- Sentence in one language, embedded into high dimensional spaces, "translated" to another language's embedding after stacking multiple layers of the same module.
- Columns: numbers of latent/embedding dimension/channels (fixed in a given layer). Row: token embedding, patch embedding, or a DoF's embedding.
- The model can be trained on a lower "resolution" (n small) and evaluated at a higher "resolution" ($n_{\text{eval}} \geq n$).

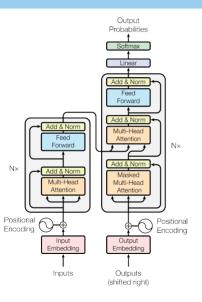
What is a Transformer?



A Transformer consists of a sequence of encoder blocks with *identical* architectures, and decoder blocks with *identical* architectures. Source: Jay Alammar. *The Illustrated Transformers*.

- Like RNN in Neural Machine Translation, the Transformer block in each layer has the *same* architecture (and the number of parameters).
- Unlike CNN, after the initial embedding layer (from words to vector), the latent representations propagated in the hidden layers are of the *same* discretization size.

What is a Transformer?



Keywords:

- "Multi-head Attention".
- "Feedforward": fully connected MLP with shared weights at each position.
- "Add": skip-connection $x \mapsto x + f(x)$.
- "Norm": layer normalization (a learned diagonal columnscaling of the latent representation).
- "Positional Encoding": a hardcoded mapping to encode different positions in different latent dimensions.

What is Multi-head Attention?

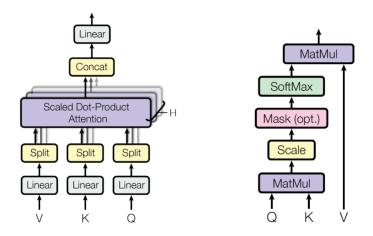
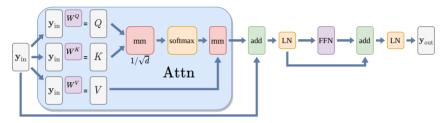


Image source: (Left) Multi-head Attention mapping. (Right) Scaled dot-product attention $\operatorname{Softmax}(QK^{\top})V$. Figure 2 in *Attention Is All You Need*.

Single-head Self-Attention

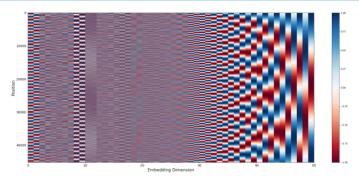


Self-attention mechanism in the classical Transformer in a single attention head.

- $oldsymbol{y}_{\mathsf{in}}, oldsymbol{y}_{\mathsf{out}} \in \mathbb{R}^{n imes d}$, input/output embeddings; positional encodings added.
- Latent representations: query Q, key K, value V generated by 3 learnable matrices $W^Q, W^K, W^V \in \mathbb{R}^{d \times d}$: $Q = yW^Q$, $K = yW^K$, $V = yW^V$.
- The scaled dot-product attention: $\operatorname{Attn}_s(\boldsymbol{y}) := \operatorname{Softmax}\left(d^{-1/2}QK^{\top}\right)V.$
- The full attention operator (add&norm, feedforward) is then

$$\operatorname{Attn}: \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d}, \quad \boldsymbol{z} = \boldsymbol{y} + \operatorname{Attn}_{s}(\boldsymbol{y}), \quad \boldsymbol{y} \mapsto \operatorname{Ln}\left(\boldsymbol{z} + g\left(\operatorname{Ln}(\boldsymbol{z})\right)\right)\right).$$

Positional embedding



PE from Attention is All You Need.

- Positional embedding (PE): $p \in \mathbb{R}^{n \times d}$ has the same dimension with the latent representation, and $y \mapsto y + p$ for the y right after the input embedding.
- ullet M: maximum discretization size; c: channel index.

$$m{x}_{(i,c)} = \sin\left(rac{i}{M^{c/d}}
ight) ext{ if } c ext{ is even; } m{x}_{(i,2c+1)} = \cos\left(rac{i}{M^{(c-1)/d}}
ight) ext{ if } c ext{ is odd}$$

Positional embeddings

Different interpretations of the latent representation (Query/Key/Value) which is an $\mathbb{R}^{n\times d}$ matrix.

- Row: a high-dimensional embedding (vector representation) of a token.
- Column: certain discretization of "basis" or "frame" 2.

Open problems: Positional embeddings

- What role exactly does PE plays in attention?
- How PE shapes the topological structure of the latent representation space?
- How to design "nice" problem-oriented PE to achieve problem-specific attributes of traditional models?
- Is PE "≈" coordinates? ViT: DOSOVITSKIY et al. (2021); DeiT: TOUVRON et al. (2021); Swin: LIU et al. (2021).

¹L. Lu et al. (2021). "Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators". In: *Nature machine intelligence*.

²F. Bartolucci et al. (2023). "Representation Equivalent Neural Operators: a Framework for Alias-free Operator Learning". In: *Thirty-seventh Conference on Neural Information Processing Systems*.

Single-layer Single-head Self-Attention

The full self-attention operator: n: discretization size, d: latent dimensions

Attn:
$$\mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d}$$
, $\mathbf{y} \mapsto \mathbf{y}_{\text{out}}$.

 $Attn(\cdot)$ consists the following operations:

- Adding PE (can be learnable): $Pe: \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d}$, $y \mapsto y + p(\theta)$
- Scaled dot-product attention: $Q = yW^Q$, $K = yW^K$, $V = yW^V$

$$\left(\operatorname{Attn}_{s}(\boldsymbol{y})\right)_{i} = \sum_{j=1}^{n} \frac{\kappa(\boldsymbol{q}_{i}, \boldsymbol{k}_{j})}{\sum_{\ell=1}^{n} \kappa(\boldsymbol{q}_{i}, \boldsymbol{k}_{j'})} \boldsymbol{v}_{j}$$

where

$$\kappa(\cdot,\cdot):\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}^+,\quad \kappa(\boldsymbol{q}_i,\boldsymbol{k}_j)=\exp(\boldsymbol{q}_i\cdot\boldsymbol{k}_j),$$
 notice $\kappa(\boldsymbol{q}_i,\boldsymbol{k}_j)=\left(\boldsymbol{y}W^Q(\boldsymbol{y}W^K)^\top\right)_{ij}$.

Single-layer Single-head Self-Attention

The full self-attention operator:

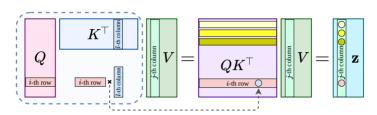
$$\operatorname{Attn}: \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d}, \quad \boldsymbol{z} = \boldsymbol{y} + \operatorname{Attn}_{\boldsymbol{s}}(\boldsymbol{y}), \quad \boldsymbol{y} \mapsto \operatorname{Ln}\left(\boldsymbol{z} + g\left(\operatorname{Ln}(\boldsymbol{z})\right)\right).$$

• Ln: layer normalization (LN), which has $\gamma, oldsymbol{eta} \in \mathbb{R}^d$ learnable as follows

$$\operatorname{Ln}(oldsymbol{y}) := rac{oldsymbol{y} - oldsymbol{\mu}}{oldsymbol{\sigma}} \odot oldsymbol{\gamma} + oldsymbol{eta}, \ oldsymbol{\mu} := rac{1}{d} \sum_{j=1}^d oldsymbol{y}^j \in \mathbb{R}^n, \quad oldsymbol{\sigma}^2 := rac{1}{d} \sum_{j=1}^d (oldsymbol{y}^j - oldsymbol{\mu}) \odot (oldsymbol{y}^j - oldsymbol{\mu}) \odot (oldsymbol{y}^j - oldsymbol{\mu}) \in \mathbb{R}^n.$$

- Note all LN operations are done in an element-wise fashion. After LN is applied, each position in the discretization will roughly follow normal distribution.
- $g(\cdot)$: a pointwise feedforward neural net with a "bottleneck" architecture in the base Transformer model. $g(\cdot)$ has width d and is applied at each z_j $(j=1,\ldots,n)$.

Single-layer Single-head Self-Attention

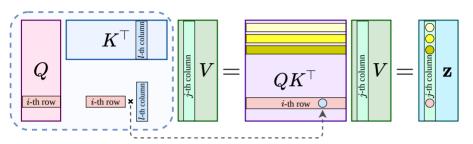


(Still) Open problem

What exactly is the mechanics of the attention mechanism?

- Kernel interpretation, RKHS: TSAI et al. (2019), WRIGHT and GONZALEZ (2021), ZHANG et al. (2022).
- Fourier (change of basis): LI et al. (2021), NGUYEN, PHAM, et al. (2022).
- Low-rank or sparse: Y. XIONG et al. (2021), NGUYEN, SULIAFU, et al. (2021a), TAY et al. (2020), HAN et al. (2022).
- Random feature interpretation: CHOROMANSKI et al. (2021), PENG et al. (2021).
- Iterative "solver": YU et al. (2023)

Scaled Dot-product Attention



$$(\mathbf{z}_i)_j = h \operatorname{Softmax}(QK^{\top})_{i\bullet} \mathbf{v}^j = hm_i^{-1} \exp\left(\mathbf{q}_i \cdot \mathbf{k}_1, \dots, \mathbf{q}_i \cdot \mathbf{k}_\ell, \dots, \mathbf{q}_i \cdot \mathbf{k}_n\right)^{\top} \cdot \mathbf{v}^j$$
$$= hm_i^{-1} \sum_{\ell=1}^n \exp(\mathbf{q}_i \cdot \mathbf{k}_\ell)(\mathbf{v}^j)_{\ell} \approx m^{-1}(x_i) \int_{\Omega} \kappa(x_i, \xi) v_j(\xi) d\xi,$$

The *i*-th row in the output computes approx. an integral transform with a non-symmetric normalized learnable low-rank "kernel" function $\kappa(x,\xi)$

$$z(x) \approx \lambda v(x) + m^{-1}(x) \int_{\Omega} \kappa(x, \xi; \theta) v(\xi; \theta) d\xi, \quad \text{where } \mathbf{q}_i = q(x_i), \mathbf{k}_i = k(x_i), \mathbf{v}_i = v(x_i)$$

Nonlocal Methods

Buades, Coll, and Morel³ proposed that the denoising filter should depend on the signal! This is the earliest prototype of attention.

$$NLM[u](x) = \frac{1}{C(x)} \int_{\Omega} \exp\left(-\frac{1}{h^2} \int_{\Omega} G_{\alpha}(t) \left| u(x+t) - u(y+t) \right|^2 dt \right) u(y) dy,$$

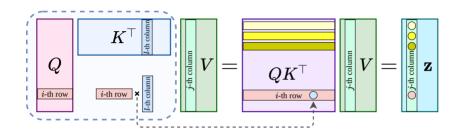
$$C(x) = \int_{\Omega} \exp\left(-\frac{1}{h^2} \int_{\Omega} G_{\alpha}(t) \left| u(x+t) - u(y+t) \right|^2 dt \right) dy.$$

Later this is generalized in papers by Osher and his postdoc using a variational perspective.⁴

³A. Buades, B. Coll, and J.-M. Morel (2005). "A review of image denoising algorithms, with a new one". In: *Multiscale modeling & simulation*.

⁴G. GILBOA and S. OSHER (2007). "Nonlocal linear image regularization and supervised segmentation". In: *Multiscale Modeling & Simulation*; G. GILBOA and S. OSHER (2009). "Nonlocal operators with applications to image processing". In: *Multiscale Modeling & Simulation*.

Making Attention more efficient

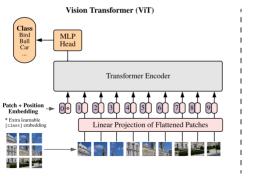


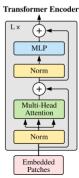
- The positive attention kernel $\mathrm{Softmax}(QK^T)$ characterizes how each position's latent representation vector interact.
- This can be replaced by a simple Fourier kernel⁵.
- Computational cost of QK^T scales quadratically with respect to the number of positions n.

⁵ J. LEE-THORP, J. AINSLIE, I. ECKSTEIN, and S. ONTANON (2022). "FNet: Mixing Tokens with Fourier Transforms". In: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.

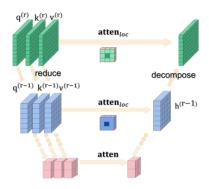
Making Attention more efficient

- Low-rank: Nyströmformer (Y. XIONG et al. (2021)), Fast-Multipole method (NGUYEN, SULIAFU, et al. (2021b)).
- Sparsification: CHILD, GRAY, RADFORD, and SUTSKEVER (2019), locality-based feature maps in Reformer KITAEV, KAISER, and LEVSKAYA (2020),
- Linearization: WANG et al. (2020), RNN interpretation (KATHAROPOULOS, VYAS, PAPPAS, and FLEURET (2020)).
- Patchify: ViT (Dosovitskiy et al. (2021)).





Hierarchically Nested Attention Neural Operator

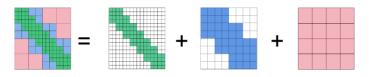


• Use local (windowed) attention to get the representation on each level:

$$\mathbf{atten}_{\mathsf{loc}}^{(m)}: \boldsymbol{v}_i^{(m)} = \sum_{j \in \mathcal{N}^{(m)}(i) \cup i} \mathcal{G}(\boldsymbol{q}_i^{(m)}, \boldsymbol{k}_j^{(m)}) \boldsymbol{v}_j^{(m)},$$

 $\mathcal{N}^{(m)}(i)$ contains m-th level neighbors of the i-th position in the discrete grid.

Hierarchically Nested Attention Neural Operator



Aggregate the attention matrix (interaction) spanning multilevels:

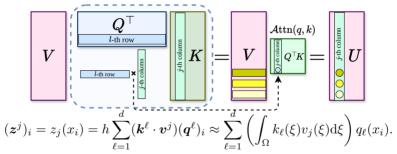
$$\left[\begin{array}{c} \vdots \\ \boldsymbol{h}_i^{(r)} \\ \vdots \end{array}\right] = \left(\sum_{m=1}^{r-1} (\mathbf{D}^{(r-1),\top} \cdots \mathbf{D}^{(m),\top} \mathbf{G}_{\mathsf{loc}}^{(m)} \mathbf{R}^{(m)} \cdots \mathbf{R}^{(r-1)}) + \mathbf{G}_{\mathsf{loc}}^{(r)} \right) \left[\begin{array}{c} \vdots \\ \boldsymbol{v}_i^{(r)} \\ \vdots \end{array}\right].$$

where the overall attention matrix on the finest level can be decomposed as

$$\mathbf{G}_h := \sum_{r=1}^{r-1} (\mathbf{D}^{(r-1), \top} \cdots \mathbf{D}^{(m), \top} \mathbf{G}_{\mathsf{loc}}^{(m)} \mathbf{R}^{(m)} \cdots \mathbf{R}^{(r-1)}) + \mathbf{G}_{\mathsf{loc}}^{(r)},$$

Galerkin-type Attention

While it makes sense to ask the kernel to be positive (similarity between rows), it
does not to ask the interaction between bases (columns) to be positive.



- Resembles a (learnable) Petrov-Galerkin projection.
- How latents interact is similar to the Channel Attention⁶.

⁶S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon (2018). "CBAM: Convolutional block attention module". In: *Proceedings of the European conference on computer vision (ECCV)*.

Galerkin-type Attention

Consider *i*-th entry in the *j*-th column z^j of z, which is the inner product of the *i*-th row of Q and the *j*-th column of $K^\top V$:

$$(\boldsymbol{z}^j)_i = h \, \boldsymbol{q}_i^{\top} \cdot (K^{\top} V)_{\bullet i}$$

$$\boldsymbol{z}^{j} = h \left(\begin{array}{cccc} | & | & | & | \\ \boldsymbol{q}_{1} & \boldsymbol{q}_{2} & \cdots & \boldsymbol{q}_{n} \\ | & | & | & | \end{array} \right)^{\top} (K^{\top}V)_{\bullet j} = h \left((K^{\top}V)_{\bullet j}^{\top} \begin{pmatrix} \boldsymbol{q}^{1} & \boldsymbol{\dots} \\ \boldsymbol{\dots} & \vdots & \boldsymbol{\dots} \\ \boldsymbol{q}^{d} & \boldsymbol{\dots} \end{pmatrix} \right)^{\top}$$

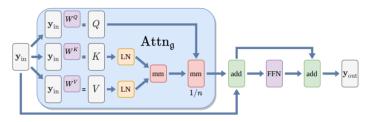
then

$$\boldsymbol{z}^j = h \sum^d \boldsymbol{q}^l (K^\top V)_{\ell j}, \quad \text{where} \ \ (K^\top V)_{\boldsymbol{\cdot} j} = \left(\boldsymbol{k}^1 \cdot \boldsymbol{v}^j, \boldsymbol{k}^2 \cdot \boldsymbol{v}^j, \cdots, \boldsymbol{k}^d \cdot \boldsymbol{v}^j\right)^\top.$$

Rewriting $\langle v_i, k_l \rangle := (K^\top V)_{\ell i}$

$$z_j(x) := \sum_{l=0}^d \langle v_j, k_l \rangle \, q_l(x), \ \text{ for } j=1,\cdots,d, \ \text{ and } x \in \{x_i\}_{i=1}^n,$$

Galerkin-projection inspired Attention



• Inspired by the Fourier transform to remove the softmax normalization to improve the computational efficiency: orthogonal $\{q_j(\cdot)\}_{j=1}^d$

$$\min_{a_i} \left\| f - \sum_{i=1}^d a_i q_i(\cdot) \right\|_{\ell^2(\Omega)}^2, \quad \text{and} \quad z(x) := \sum_{\ell=1}^d \frac{(f,q_\ell)}{(q_\ell,q_\ell)} q_\ell(x),$$

• Inspired by the Gram matrix inverse normalization in the proof of the Ceá type lemma, and layer normalization modifications⁷.

⁷R. XIONG et al. (2020). "On layer normalization in the transformer architecture". In: *International Conference on Machine Learning*. PMLR.

A preliminary result on the Galerkin-type Attention

Theorem (Approximation capacity of a single layer of Galerkin attention ⁸)

 $\mathbb{Q}_h \subset \mathcal{Q}$ and $\mathbb{V}_h \subset \mathcal{V}$ are the current approximation space, suppose there exists a continuous key-to-value map that is bounded below on the discrete approximation space, i.e., the functional norm of $v \mapsto b(q,v)$ is bounded below for any q, then for g_θ consists a Galerkin attention composed with a channel reduction map

$$\min_{\theta} \|f - g_{\theta}(\mathbf{y})\| \leq \underbrace{c^{-1}}_{\|b(q,\cdot)\|_{\mathbb{V}_h'} \geq c} \underbrace{\min_{q \in \mathbb{Q}_h} \max_{v \in \mathbb{V}_h} \frac{|b(\Pi f - q, v)|}{\|v\|}}_{\text{(Error of the Petrov-Galerkin projection)}} + \underbrace{\|f - \Pi f\|}_{\text{(Consistency)}}.$$

- Intepretation: for a "query" (a function in a Hilbert space), to deliver the best approximator in "value" (trial space), the "key" space (test space) has to be big enough so that for every value there is a key to unlock it.
- discrete Ladyzhenskaya-Babuška-Brezzi inf-sup condition: why Transformers have capacity to generalize so well with respect to the length of the sequence.

⁸ C. (2021). "Choose a Transformer: Fourier or Galerkin". In: Advances in Neural Information Processing Systems (NeurIPS)

Sketch of the proof

• For the continuous bilinear form $b(\cdot,\cdot): \mathcal{Q} \times \mathcal{V} \to \mathbb{R}$, $b(q,\cdot): v \mapsto b(q,v)$ is bounded below on $\mathbb{V}_h \subset \mathcal{V}$ for any $q \in \mathbb{Q}_h$:

$$c||q||_{\mathcal{H}} \le \sup_{v \in \mathbb{V}_h} \frac{|b(q,v)|}{||v||_{\mathcal{V}}}.$$

The Riesz map by $b(\cdot,\cdot)$ from the value space to the key space is injective (or key-to-value is surjective). We can verify c is independent of the sequence length for the scaled dot-product attention (without softmax).

• Consider an incoming function f's projection in \mathbb{Q}_h : f_h (query). By the inf-sup condition above,

$$||f_h - g_{\theta}(\mathbf{y})||_{\mathcal{H}} \le c^{-1} \sup_{\mathbf{v} \in \mathbb{V}_h} \frac{|b(f_h - g_{\theta}(\mathbf{y}), \mathbf{v})|}{||\mathbf{v}||_{\mathcal{V}}}.$$

The rest is just to show

$$\min_{\theta} \max_{v \in \mathbb{V}_h} \frac{|b(f_h - g_{\theta}(\mathbf{y}), v)|}{\|v\|_{\mathcal{V}}} \le \min_{q \in \mathbb{Q}_h} \max_{v \in \mathbb{V}_h} \frac{|b(f_h - q, v)|}{\|v\|_{\mathcal{V}}}.$$

Sketch of the proof

Solving the min-max problem

$$\min_{q \in \mathbb{Q}_h} \max_{v \in \mathbb{V}_h} \frac{\left| \langle \Phi f_h, v \rangle_h - b(q, v) \right|}{\|v\|_{\mathcal{H}}}$$

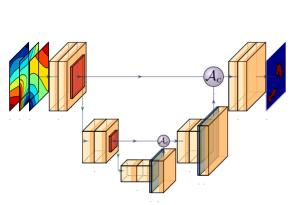
is equivalent to solving the following saddle point problem:

$$\begin{cases} \langle w, v \rangle_h + b(p, v) = \langle \Phi f_h, v \rangle_h, & \forall v \in \mathbb{V}_h, \\ b(q, w) = 0, & \forall q \in \mathbb{Q}_h. \end{cases}$$

• Lastly, the scaled dot-product attention has capacity to represent this best approximator's vector representation \boldsymbol{p} : let $\Lambda = \operatorname{blkdiag}\left\{(BM^{-1}B^{\top})^{-1},0\right\}$, B and M be the Gram (mass) matrices associated with $b(\cdot,\cdot)$ and $\langle\cdot,\cdot\rangle_h$

$$\begin{split} \widetilde{Q} &:= \mathbf{y}\widetilde{W}^Q \leftarrow \mathbf{y}W^QU, \\ \widetilde{K} &:= \mathbf{y}\widetilde{W}^K \leftarrow \mathbf{y}W^QU\Lambda, \\ \widetilde{V} &:= \mathbf{y}\widetilde{W}^V \leftarrow \mathbf{y}W^VM^{-1}, \\ \text{and } \boldsymbol{p} &= \widetilde{Q}(\widetilde{K}^T\widetilde{V})\boldsymbol{\zeta}. \end{split}$$

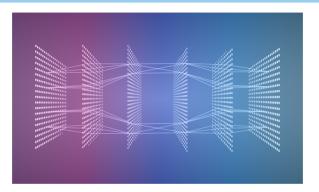
Making linear Attention more efficient



- U-Net meta-architecture 9.
- Input: the concatenation of discretizations of ϕ and $\nabla \phi$.
- Output: the approximation to the index map \mathcal{I}^D .
- □: 3 × 3 convolution + ReLU;
- ■: normalization;
- ■: interpolation;
- cross attention from the coarse grid to the fine grid;
- input and output discretized functions.

⁹O. Ronneberger, P. Fischer, and T. Brox (2015). "U-net: Convolutional networks for biomedical image segmentation". In: *International Conference on Medical image computing and computer-assisted intervention*. Springer

Representational capcity



- The embedding layer in Transformer constructs an ultra-high-dimensional vector representation of each token in a sentence or each patch in an image.
- In the encoder layer, this (latent) representation interacts with itself nonlinearly to get a "better" representation.
- This interaction can be position-wise (row-wise), or channel-wise (column-wise).

Image source: Transformers: What They Are and Why They Matter, Mehreen Saeed.

Representational capcity

Open problem about representational capacity

How to prove the universal representation (approximation) theorem for Transformer when the number of layers increase?

- What is representational power of (stacked) attention layer exactly¹⁰?
- Random feature model¹¹: each channel (column) of the latent representation is similar to an RF-RR model

$$m{f} \mapsto \Phi(m{f};m{ heta}) = rac{1}{d} \sum_{j=1}^d lpha_j(m{ heta}) g(m{f};m{ heta})$$

where

$$oldsymbol{ heta} = rgmin rac{1}{N} \sum_{i=1}^N \|oldsymbol{u}_i - \Phi(oldsymbol{f}_i; heta)\|_V^2 + ext{regularizations}$$

¹⁰C. YuN et al. (2020). "Are Transformers universal approximators of sequence-to-sequence functions?" In: International Conference on Learning Representations.

¹¹A. Rahimi and B. Recht (2008). "Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning". In: *Advances in neural information processing systems*.

Representational capcity and positional embedding

- PE plays an important role in shaping the representational capacity.
- Learnable PE¹², rotational-invariant PE¹³, etc.

Theorem (Universal representater theorem (informal simplified version)¹⁴)

Given fixed n and d, the function class of Transformers $\{u(\boldsymbol{y}): u(\boldsymbol{y}) = g(\boldsymbol{y} + \boldsymbol{x}), \text{ where } g := g_{\ell} \circ \cdots \circ g_1\}$ with the absolute fixed $PE \ \boldsymbol{x}$ is a universal approximator for continuous functions that map a compact domain in $\mathbb{R}^{n \times d}$ to $\mathbb{R}^{n \times d}$.

Open problem: representational capacity

Can the theoretical results on the approximation capacity of Transformer with different PEs be reflected in specially designed experiments?

¹²J. Gehring et al. (2017). "Convolutional sequence to sequence learning". In: *International conference on machine learning*. PMLR.

¹³ J. Su et al. (2021). "Roformer: Enhanced transformer with rotary position embedding". In: arXiv preprint arXiv:2104.09864.

¹⁴S. Luo et al. (2022). "Your Transformer May Not be as Powerful as You Expect". In: *Advances in Neural Information Processing Systems*