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What is a Transformer?

The Transformer is a deep neural network architecture to solve the machine translation
problem in Natural Language Processing. Source: Jay Alammar. The Illustrated Transformers.



Tensor2tensor

• seq2seq or tensor2tensor in Neural Machine Translation maps various sized
matrices to matrices of the same size.

• A tensor2tensor DNN parametrizes the following discrete map for H = (L2(Ω))d

Tθ : Rn×d → Rn×d, T : H → H.
• Sentence in one language, embedded into high dimensional spaces, “translated” to

another language’s embedding after stacking multiple layers of the same module.
• Columns: numbers of latent/embedding dimension/channels (fixed in a given

layer). Row: token embedding, patch embedding, or a DoF’s embedding.
• The model can be trained on a lower “resolution” (n small) and evaluated at a

higher “resolution” (neval ≥ n).



What is a Transformer?

A Transformer consists of a sequence of encoder blocks with identical architectures, and
decoder blocks with identical architectures. Source: Jay Alammar. The Illustrated
Transformers.

• Like RNN in Neural Machine Translation, the Transformer block in each layer has
the same architecture (and the number of parameters).

• Unlike CNN, after the initial embedding layer (from words to vector), the latent
representations propagated in the hidden layers are of the same discretization size.



What is a Transformer?

Keywords:
• “Multi-head Attention”.
• “Feedforward”: fully connected

MLP with shared weights at
each position.

• “Add”: skip-connection x 7→
x+ f(x).

• “Norm”: layer normalization
(a learned diagonal column-
scaling of the latent represen-
tation).

• “Positional Encoding”: a hard-
coded mapping to encode dif-
ferent positions in different la-
tent dimensions.



What is Multi-head Attention?

Image source: (Left) Multi-head Attention mapping. (Right) Scaled dot-product
attention Softmax(QK⊤)V . Figure 2 in Attention Is All You Need.



Single-head Self-Attention
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Self-attention mechanism in the classical Transformer in a single attention head.

• yin,yout ∈ Rn×d, input/output embeddings; positional encodings added.
• Latent representations: query Q, key K, value V generated by 3 learnable

matrices WQ,WK ,WV ∈ Rd×d: Q = yWQ, K = yWK , V = yWV .
• The scaled dot-product attention: Attns(y) := Softmax

(
d−1/2QK⊤)V.

• The full attention operator (add&norm, feedforward) is then

Attn : Rn×d → Rn×d, z = y +Attns(y), y 7→ Ln
(
z + g

(
Ln(z))

))
.



Positional embedding

PE from Attention is All You Need.

• Positional embedding (PE): p ∈ Rn×d has the same dimension with the latent
representation, and y 7→ y + p for the y right after the input embedding.

• M : maximum discretization size; c: channel index.

x(i,c) = sin

(
i

M c/d

)
if c is even; x(i,2c+1) = cos

(
i

M (c−1)/d

)
if c is odd



Positional embeddings

Different interpretations of the latent representation (Query/Key/Value) which is an
Rn×d matrix.

• Row: a high-dimensional embedding (vector representation) of a token.
• Column: certain discretization of “basis”1 or “frame”2 .

Open problems: Positional embeddings

• What role exactly does PE plays in attention?
• How PE shapes the topological structure of the latent representation space?
• How to design “nice” problem-oriented PE to achieve problem-specific attributes

of traditional models?
• Is PE “≈” coordinates? ViT: Dosovitskiy et al. (2021); DeiT: Touvron et al.

(2021); Swin: Liu et al. (2021).

1L. Lu et al. (2021). “Learning nonlinear operators via DeepONet based on the universal
approximation theorem of operators”. In: Nature machine intelligence.

2F. Bartolucci et al. (2023). “Representation Equivalent Neural Operators: a Framework for
Alias-free Operator Learning”. In: Thirty-seventh Conference on Neural Information Processing
Systems.



Single-layer Single-head Self-Attention

The full self-attention operator: n: discretization size, d: latent dimensions

Attn : Rn×d → Rn×d, y 7→ yout.

Attn(·) consists the following operations:
• Adding PE (can be learnable): Pe : Rn×d → Rn×d, y 7→ y + p(θ)

• Scaled dot-product attention: Q = yWQ, K = yWK , V = yWV

(
Attns(y)

)
i
=

n∑
j=1

κ(qi,kj)∑n
ℓ=1 κ(qi,kj′)

vj

where
κ(·, ·) : Rd × Rd → R+, κ(qi,kj) = exp(qi · kj),

notice κ(qi,kj) =
(
yWQ(yWK)⊤

)
ij

.



Single-layer Single-head Self-Attention

The full self-attention operator:

Attn : Rn×d → Rn×d, z = y +Attns(y), y 7→ Ln
(
z + g

(
Ln(z)

))
.

• Ln: layer normalization (LN), which has γ,β ∈ Rd learnable as follows

Ln(y) :=
y − µ

σ
⊙ γ + β,

µ :=
1

d

d∑
j=1

yj ∈ Rn, σ2 :=
1

d

d∑
j=1

(yj − µ)⊙ (yj − µ) ∈ Rn.

• Note all LN operations are done in an element-wise fashion. After LN is applied,
each position in the discretization will roughly follow normal distribution.

• g(·): a pointwise feedforward neural net with a “bottleneck” architecture in the
base Transformer model. g(·) has width d and is applied at each zj (j = 1, . . . , n).



Single-layer Single-head Self-Attention
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(Still) Open problem

What exactly is the mechanics of the attention mechanism?

• Kernel interpretation, RKHS: Tsai et al. (2019), Wright and Gonzalez
(2021), Zhang et al. (2022).

• Fourier (change of basis): Li et al. (2021), Nguyen, Pham, et al. (2022).
• Low-rank or sparse: Y. Xiong et al. (2021), Nguyen, Suliafu, et al. (2021a),

Tay et al. (2020), Han et al. (2022).
• Random feature interpretation: Choromanski et al. (2021), Peng et al. (2021).
• Iterative “solver”: Yu et al. (2023)



Scaled Dot-product Attention
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(zi)j = h Softmax(QK⊤)i• v

j = hm−1
i exp

(
qi · k1, . . . , qi · kℓ, . . . , qi · kn

)⊤ · vj

= hm−1
i

n∑
ℓ=1

exp(qi · kℓ)(v
j)ℓ ≈ m−1(xi)

∫
Ω

κ(xi, ξ)vj(ξ)dξ,

The i-th row in the output computes approx. an integral transform with a
non-symmetric normalized learnable low-rank “kernel” function κ(x, ξ)

z(x) ≈ λv(x)+m−1(x)

∫
Ω

κ(x, ξ; θ)v(ξ; θ)dξ, where qi = q(xi),ki = k(xi),vi = v(xi).



Nonlocal Methods

Buades, Coll, and Morel3 proposed that the denoising filter should depend on the
signal! This is the earliest prototype of attention.

NLM[u](x) =
1

C(x)

∫
Ω

exp

(
− 1

h2

∫
Ω

Gα(t)
∣∣u(x+ t)− u(y + t)

∣∣2 dt)u(y) dy,

C(x) =

∫
Ω

exp

(
− 1

h2

∫
Ω

Gα(t)
∣∣u(x+ t)− u(y + t)

∣∣2 dt) dy.

Later this is generalized in papers by Osher and his postdoc using a variational
perspective.4

3A. Buades, B. Coll, and J.-M. Morel (2005). “A review of image denoising algorithms, with a
new one”. In: Multiscale modeling & simulation.

4G. Gilboa and S. Osher (2007). “Nonlocal linear image regularization and supervised
segmentation”. In: Multiscale Modeling & Simulation; G. Gilboa and S. Osher (2009). “Nonlocal
operators with applications to image processing”. In: Multiscale Modeling & Simulation.



Making Attention more efficient
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• The positive attention kernel Softmax(QKT ) characterizes how each position’s

latent representation vector interact.
• This can be replaced by a simple Fourier kernel5.
• Computational cost of QKT scales quadratically with respect to the number of

positions n.

5J. Lee-Thorp, J. Ainslie, I. Eckstein, and S. Ontanon (2022). “FNet: Mixing Tokens with
Fourier Transforms”. In: Proceedings of the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies.



Making Attention more efficient

• Low-rank: Nyströmformer (Y. Xiong et al. (2021)), Fast-Multipole method
(Nguyen, Suliafu, et al. (2021b)).

• Sparsification: Child, Gray, Radford, and Sutskever (2019), locality-based
feature maps in Reformer Kitaev, Kaiser, and Levskaya (2020),

• Linearization: Wang et al. (2020), RNN interpretation (Katharopoulos,
Vyas, Pappas, and Fleuret (2020)).

• Patchify: ViT (Dosovitskiy et al. (2021)).

Transformer Encoder

MLP 
Head

Vision Transformer  (ViT)

*

Linear Projection of Flattened Patches
*  Extra learnable

     [ c l ass]  embedding

1 2 3 4 5 6 7 8 90Patch + Position 
Embedding

Class
Bird
Ball
Car
...

Embedded 
Patches

Multi-Head 
Attention

Norm

MLP

Norm

+L x

+

Transformer  Encoder



Hierarchically Nested Attention Neural Operator

• Use local (windowed) attention to get the representation on each level:

atten(m)
loc : v

(m)
i =

∑
j∈N (m)(i)∪i

G(q(m)
i ,k

(m)
j )v

(m)
j ,

N (m)(i) contains m-th level neighbors of the i-th position in the discrete grid.



Hierarchically Nested Attention Neural Operator

• Aggregate the attention matrix (interaction) spanning multilevels:
...

h
(r)
i
...

 =

(
r−1∑
m=1

(D(r−1),⊤ · · ·D(m),⊤G
(m)
loc R(m) · · ·R(r−1)) +G

(r)
loc

)
...

v
(r)
i
...

 .

where the overall attention matrix on the finest level can be decomposed as

Gh :=

r−1∑
m=1

(D(r−1),⊤ · · ·D(m),⊤G
(m)
loc R(m) · · ·R(r−1)) +G

(r)
loc ,



Galerkin-type Attention

• While it makes sense to ask the kernel to be positive (similarity between rows), it
does not to ask the interaction between bases (columns) to be positive.
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(zj)i = zj(xi) = h

d∑
ℓ=1

(kℓ · vj)(qℓ)i ≈
d∑

ℓ=1

(∫
Ω

kℓ(ξ)vj(ξ)dξ

)
qℓ(xi).

• Resembles a (learnable) Petrov-Galerkin projection.
• How latents interact is similar to the Channel Attention6.

6S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon (2018). “CBAM: Convolutional block attention
module”. In: Proceedings of the European conference on computer vision (ECCV).



Galerkin-type Attention

Consider i-th entry in the j-th column zj of z, which is the inner product of the i-th
row of Q and the j-th column of K⊤V :

(zj)i = h q⊤
i · (K⊤V )•j

zj = h

 | | | |
q1 q2 · · · qn
| | | |

⊤

(K⊤V )•j = h

(K⊤V )⊤•j

 q1

...
qd

⊤

then

zj = h

d∑
ℓ=1

ql(K⊤V )ℓj , where (K⊤V )•j =
(
k1 · vj ,k2 · vj , · · · ,kd · vj

)⊤
.

Rewriting ⟨vj , kl⟩ := (K⊤V )ℓj

zj(x) :=

d∑
ℓ=1

⟨vj , kl⟩ ql(x), for j = 1, · · · , d, and x ∈ {xi}ni=1,



Galerkin-projection inspired Attention
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• Inspired by the Fourier transform to remove the softmax normalization to improve
the computational efficiency: orthogonal {qj(·)}dj=1

min
ai

∥∥∥f − d∑
i=1

aiqi(·)
∥∥∥2
ℓ2(Ω)

, and z(x) :=

d∑
ℓ=1

(f, qℓ)

(qℓ, qℓ)
qℓ(x),

• Inspired by the Gram matrix inverse normalization in the proof of the Ceá type
lemma, and layer normalization modifications7.

7R. Xiong et al. (2020). “On layer normalization in the transformer architecture”. In:
International Conference on Machine Learning. PMLR.



A preliminary result on the Galerkin-type Attention

Theorem (Approximation capacity of a single layer of Galerkin attention 8)

Qh ⊂ Q and Vh ⊂ V are the current approximation space, suppose there exists a
continuous key-to-value map that is bounded below on the discrete approximation
space, i.e., the functional norm of v 7→ b(q, v) is bounded below for any q, then for gθ
consists a Galerkin attention composed with a channel reduction map

min
θ
∥f − gθ(y)∥ ≤ c−1︸︷︷︸

∥b(q,·)∥V′
h
≥c

min
q∈Qh

max
v∈Vh

|b(Πf − q, v)|
∥v∥︸ ︷︷ ︸

(Error of the Petrov-Galerkin projection)

+ ∥f −Πf∥︸ ︷︷ ︸
(Consistency)

.

• Intepretation: for a “query” (a function in a Hilbert space), to deliver the best
approximator in “value” (trial space), the “key” space (test space) has to be big
enough so that for every value there is a key to unlock it.

• discrete Ladyzhenskaya-Babuška-Brezzi inf-sup condition: why Transformers have
capacity to generalize so well with respect to the length of the sequence.

8 C. (2021). “Choose a Transformer: Fourier or Galerkin”. In: Advances in Neural Information
Processing Systems (NeurIPS)



Sketch of the proof

• For the continuous bilinear form b(·, ·) : Q× V → R, b(q, ·) : v 7→ b(q, v) is
bounded below on Vh ⊂ V for any q ∈ Qh:

c∥q∥H ≤ sup
v∈Vh

|b(q, v)|
∥v∥V

.

The Riesz map by b(·, ·) from the value space to the key space is injective (or
key-to-value is surjective). We can verify c is independent of the sequence length
for the scaled dot-product attention (without softmax).

• Consider an incoming function f ’s projection in Qh: fh (query). By the inf-sup
condition above,

∥fh − gθ(y)∥H ≤ c−1 sup
v∈Vh

|b(fh − gθ(y), v)|
∥v∥V

.

• The rest is just to show

min
θ

max
v∈Vh

|b(fh − gθ(y), v)|
∥v∥V

≤ min
q∈Qh

max
v∈Vh

|b(fh − q, v)|
∥v∥V

.



Sketch of the proof

• Solving the min-max problem

min
q∈Qh

max
v∈Vh

|⟨Φfh, v⟩h − b(q, v)|
∥v∥H

is equivalent to solving the following saddle point problem:{
⟨w, v⟩h + b(p, v) = ⟨Φfh, v⟩h, ∀v ∈ Vh,

b(q, w) = 0, ∀q ∈ Qh.

• Lastly, the scaled dot-product attention has capacity to represent this best
approximator’s vector representation p: let Λ = blkdiag

{
(BM−1B⊤)−1, 0

}
, B

and M be the Gram (mass) matrices associated with b(·, ·) and ⟨·, ·⟩h
Q̃ := yW̃Q ← yWQU,

K̃ := yW̃K ← yWQUΛ,

Ṽ := yW̃V ← yWV M−1,

and p = Q̃(K̃T Ṽ )ζ.



Making linear Attention more efficient

Ac

Ac

• U-Net meta-architecture 9.
• Input: the concatenation of

discretizations of ϕ and ∇ϕ.
• Output: the approximation to

the index map ID.
• : 3×3 convolution + ReLU;
• : normalization;
• : interpolation;
• : cross attention from the

coarse grid to the fine grid;
• : input and output dis-

cretized functions.

9O. Ronneberger, P. Fischer, and T. Brox (2015). “U-net: Convolutional networks for
biomedical image segmentation”. In: International Conference on Medical image computing and
computer-assisted intervention. Springer



Representational capcity

• The embedding layer in Transformer constructs an ultra-high-dimensional vector
representation of each token in a sentence or each patch in an image.

• In the encoder layer, this (latent) representation interacts with itself nonlinearly to
get a “better” representation.

• This interaction can be position-wise (row-wise), or channel-wise (column-wise).

Image source: Transformers: What They Are and Why They Matter, Mehreen Saeed.



Representational capcity

Open problem about representational capacity

How to prove the universal representation (approximation) theorem for Transformer
when the number of layers increase?

• What is representational power of (stacked) attention layer exactly10?
• Random feature model11: each channel (column) of the latent representation is

similar to an RF-RR model

f 7→ Φ(f ;θ) =
1

d

d∑
j=1

αj(θ)g(f ;θ)

where

θ = argmin
1

N

N∑
i=1

∥ui − Φ(fi; θ)∥2V + regularizations

10C. Yun et al. (2020). “Are Transformers universal approximators of sequence-to-sequence
functions?” In: International Conference on Learning Representations.

11A. Rahimi and B. Recht (2008). “Weighted sums of random kitchen sinks: Replacing
minimization with randomization in learning”. In: Advances in neural information processing systems.



Representational capcity and positional embedding

• PE plays an important role in shaping the representational capacity.
• Learnable PE12, rotational-invariant PE13, etc.

Theorem (Universal representater theorem (informal simplified version)14)

Given fixed n and d, the function class of Transformers
{u(y) : u(y) = g(y + x), where g := gℓ ◦ · · · ◦ g1} with the absolute fixed PE x is a
universal approximator for continuous functions that map a compact domain in Rn×d

to Rn×d.

Open problem: representational capacity

Can the theoretical results on the approximation capacity of Transformer with different
PEs be reflected in specially designed experiments?

12J. Gehring et al. (2017). “Convolutional sequence to sequence learning”. In: International
conference on machine learning. PMLR.

13J. Su et al. (2021). “Roformer: Enhanced transformer with rotary position embedding”. In: arXiv
preprint arXiv:2104.09864.

14S. Luo et al. (2022). “Your Transformer May Not be as Powerful as You Expect”. In: Advances
in Neural Information Processing Systems


